Statistics 3 Solution Bank

Exercise 2A

1 a $\mathrm{E}(W)=\mathrm{E}(X)+\mathrm{E}(Y)=80+50=130$ $\operatorname{Var}(W)=\operatorname{Var}(X)+\operatorname{Var}(Y)=9+4=13$ $W \sim \mathrm{~N}(130,13)$
b $\mathrm{E}(W)=\mathrm{E}(X)-\mathrm{E}(Y)=80-50=30$
$\operatorname{Var}(W)=\operatorname{Var}(X)+\operatorname{Var}(Y)=9+4=13$
$W \sim \mathrm{~N}(30,13)$
$2 \mathrm{E}(R)=\mathrm{E}(X)+\mathrm{E}(Y)+\mathrm{E}(W)=45+54+49=148$
$\operatorname{Var}(R)=\operatorname{Var}(X)+\operatorname{Var}(Y)+\operatorname{Var}(W)=6+4+8=18$
$R \sim \mathrm{~N}(148,18)$
3 a $T=3 X$, so $T \sim \mathrm{~N}\left(3 \times 60,3^{2} \times 25\right)$
$T \sim \mathrm{~N}(180,225)$
b $T=7 Y$, so $T \sim \mathrm{~N}\left(7 \times 50,7^{2} \times 16\right)$
$T \sim \mathrm{~N}(350,784)$
c $T=3 X+7 Y$, so $T \sim \mathrm{~N}(180+350,225+784)$ $T \sim \mathrm{~N}(530,1009)$
d $T=X-2 Y$, so $T \sim \mathrm{~N}\left(60-2 \times 50,25+2^{2} \times 16\right)$ $T \sim \mathrm{~N}(-40,89)$

4 a Let $D=A+B$, then $D \sim \mathrm{~N}(50+60,6+8)$, so $D \sim \mathrm{~N}(110,14)$.
Then using the normal distribution function on a calculator gives:
$\mathrm{P}(A+B<115)=\mathrm{P}(D<115)=0.9093$ (4 d.p.)
b Let $D=A+B+C$, then $D \sim \mathrm{~N}(50+60+80,6+8+10)$, so $D \sim \mathrm{~N}(190,24)$ $\mathrm{P}(A+B+C>198)=1-\mathrm{P}(D<198)=1-0.9488=0.0512$ (4d.p.)
c Let $D=B+C$, then $D \sim \mathrm{~N}(60+80,8+10)$, so $D \sim \mathrm{~N}(140,18)$ $\mathrm{P}(B+C<138)=\mathrm{P}(D<138)=0.3187$ (4 d.p.)
d Let $D=2 A+B-C$, then $D \sim \mathrm{~N}(2 \times 50+60-80,4 \times 6+8+10)$, so $D \sim \mathrm{~N}(80,42)$ $\mathrm{P}(2 A+B-C<70)=\mathrm{P}(D<70)=0.0614$ (4d.p.)
e Let $D=A+3 B-C$, then $D \sim \mathrm{~N}(50+3 \times 60-80,6+9 \times 8+10)$, so $D \sim \mathrm{~N}(150,88)$ $\mathrm{P}(A+3 B-C>140)=1-\mathrm{P}(D<140)=1-0.1432=0.8578(4 \mathrm{~d} . \mathrm{p}$.)
f Let $D=A+B$, then $D \sim \mathrm{~N}(50+60,6+8)$, so $D \sim \mathrm{~N}(110,14)$ $\mathrm{P}(105<A+B<116)=\mathrm{P}(D<116)-\mathrm{P}(D<105)=0.9456-0.0907=0.8549$ (4 d.p.)

5 a Let $A=Y-X$, then $A \sim \mathrm{~N}(80-76,10+15)$, i.e. $A \sim \mathrm{~N}(4,25)$ $\mathrm{P}(Y>X)=\mathrm{P}(Y-X>0)=\mathrm{P}(A>0)=1-\mathrm{P}(A<0)=1-0.2119=0.7881$ (4d.p.)
b $\mathrm{P}(X>Y)=\mathrm{P}(Y-X<0)=\mathrm{P}(A<0)=0.2119$ (4d.p.)
c i The probability that X and Y differ by less than $3=\mathrm{P}(-3<A<3)$
$\mathrm{P}(-3<A<3)=\mathrm{P}(A<3)-\mathrm{P}(A<-3)=0.42074-0.08076=0.3400(4$ d.p. $)$
ii The probability that X and Y differ by more than $7=\mathrm{P}(A<-7)+\mathrm{P}(A>7)$
$\mathrm{P}(A<-7)+\mathrm{P}(A>7)=\mathrm{P}(A<-7)+1-\mathrm{P}(A<7)=0.0139+1-0.7257=0.2882$ (4 d.p.)
6 a Runner $A \sim \mathrm{~N}\left(13.2,0.9^{2}\right)$, Runner $B \sim \mathrm{~N}\left(12.9,1.3^{2}\right)$
Let $D=A-B$, then $D \sim \mathrm{~N}\left(13.2-12.9,0.9^{2}+1.3^{2}\right)$, so $D \sim \mathrm{~N}(0.3,2.5)$.
$\mathrm{P}(A-B>0.5)=\mathrm{P}(D>0.5)=1-\mathrm{P}(D<0.5)=1-0.5503=0.4497$ (4 d.p.)
b $\mathrm{P}($ photo finish $)=\mathrm{P}(-0.1<D<0.1)=\mathrm{P}(<0.1)-\mathrm{P}(<-0.1)$

$$
=0.44967-0.40014=0.0495 \text { (4 d.p.) }
$$

7 Let R be the diameter of a steel rod and T be the internal diameter of a steel tube, then
$R \sim \mathrm{~N}\left(3.55,0.02^{2}\right), T \sim \mathrm{~N}\left(3.60,0.02^{2}\right)$
Let $A=T-R$, then $A \sim \mathrm{~N}\left(3.60-3.55,0.02^{2}+0.02^{2}\right)$, so $A \sim \mathrm{~N}(0.05,0.0008)$.
$\mathrm{P}(T-R<0)=\mathrm{P}(A<0)=0.0385$ (4d.p.)

8 Let T be the mass of a randomly selected jar of jam, B be the mass of a randomly selected box and then Y be the mass of a box of 6 jars, then $T \sim \mathrm{~N}\left(1000,12^{2}\right), B \sim \mathrm{~N}\left(250,10^{2}\right), Y=T_{1}+T_{2}+T_{3}+T_{4}+T_{5}+T_{6}+B$
So $Y \sim \mathrm{~N}\left(6 \times 1000+250,6 \times 12^{2}+10^{2}\right)$, hence $Y \sim \mathrm{~N}(6250,964)$
Using a calculator gives $\mathrm{P}(Y<6200)=0.0537$ (4 d.p.)

